Section 4.2

Math 231

Hope College

Kernel and Image

Let *f* : *V* → *W* be a linear transformation from a vector space *V* to a vector space *W*, and let **0**_W be the zero vector of *W*. We define the kernel of *f*, denoted ker(*f*), to be the set

$$\ker(f) = \{\mathbf{x} \in V \mid f(\mathbf{x}) = \mathbf{0}_W\}.$$

- Theorem 4.9: Let *f* : *V* → *W* be a linear transformation from a vector space *V* to a vector space *W*.
 - Let $\mathbf{0}_V$ be the zero vector of V and let $\mathbf{0}_W$ be the zero vector of W. Then $f(\mathbf{0}_V) = \mathbf{0}_W$.
 - 2 ker(f) is a subspace of V.
 - \bigcirc im(*f*) is a subspace of *W*.
 - If $f : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation defined as $f(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ by a matrix $A \in M_{m,n}(\mathbb{R})$, then

$$\operatorname{ker}(f) = \operatorname{NS}(A)$$
 and $\operatorname{im}(f) = \operatorname{CS}(A)$.

< □ > < 同 > < 三 > <

Kernel and Image

Let *f* : *V* → *W* be a linear transformation from a vector space *V* to a vector space *W*, and let **0**_W be the zero vector of *W*. We define the **kernel** of *f*, denoted ker(*f*), to be the set

$$\ker(f) = \{\mathbf{x} \in V \mid f(\mathbf{x}) = \mathbf{0}_W\}.$$

- **Theorem 4.9:** Let $f: V \rightarrow W$ be a linear transformation from a vector space V to a vector space W.
 - Let **0**_V be the zero vector of V and let **0**_W be the zero vector of W. Then f(**0**_V) = **0**_W.
 - 2 ker(f) is a subspace of V.
 - (a) im(f) is a subspace of W.
 - If $f : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation defined as $f(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ by a matrix $A \in M_{m,n}(\mathbb{R})$, then

$$\ker(f) = \operatorname{NS}(A)$$
 and $\operatorname{im}(f) = \operatorname{CS}(A)$.

- Let V and W be vector spaces, and let f : V → W be a linear transformation. We define the rank of f to be dim(im(f)) and the nullity of f to be dim(ker(f)).
- **Theorem 4.13:** Let *V* and *W* be vector spaces, and let $f: V \rightarrow W$ be a linear transformation.
 - 1) *f* is injective if and only if $ker(f) = \{\mathbf{0}_V\}$.
 - 2 If \mathcal{B} is a spanning set for V, then $f(\mathcal{B})$ spans $\operatorname{im}(f)$.
 - If f is injective and B is a linearly independent subset of V, then f(B) is linearly independent.
 - If f is injective, then $rank(f) = \dim V$.
 - 5 If dim $V < \infty$, then dim $V = \operatorname{rank}(f) + \operatorname{null}(f)$.

ヘロト ヘ戸ト ヘヨト ヘヨト

- Let V and W be vector spaces, and let f : V → W be a linear transformation. We define the rank of f to be dim(im(f)) and the nullity of f to be dim(ker(f)).
- **Theorem 4.13:** Let *V* and *W* be vector spaces, and let $f: V \rightarrow W$ be a linear transformation.
 - *f* is injective if and only if $ker(f) = {\mathbf{0}_V}$.
 - 2 If \mathcal{B} is a spanning set for V, then $f(\mathcal{B})$ spans im(f).
 - If f is injective and B is a linearly independent subset of V, then f(B) is linearly independent.
 - If f is injective, then $rank(f) = \dim V$.
 - **5** If dim $V < \infty$, then dim $V = \operatorname{rank}(f) + \operatorname{null}(f)$.

ヘロン 人間 とくほ とくほ とう

- **Theorem 4.14:** Let *V*, *W*, and *Z* be vector spaces, and let $f: V \rightarrow W$ and $g: W \rightarrow Z$ be linear transformations. Then $g \circ f: V \rightarrow Z$ is a linear transformation.
- **Theorem 4.15:** Let *V* and *W* be vector spaces, and let $f: V \rightarrow W$ be a bijective linear transformation. Then the inverse function $f^{-1}: W \rightarrow V$ is a linear transformation.
- Let V and W be vector spaces, and f : V → W a bijective linear transformation. Then f is called an **isomorphism** of vector spaces between V and W, and V and W are said to be **isomorphic**. We write V ≅ W.

三 > - -

- **Theorem 4.14:** Let V, W, and Z be vector spaces, and let $f: V \rightarrow W$ and $g: W \rightarrow Z$ be linear transformations. Then $g \circ f: V \rightarrow Z$ is a linear transformation.
- **Theorem 4.15:** Let *V* and *W* be vector spaces, and let $f: V \rightarrow W$ be a bijective linear transformation. Then the inverse function $f^{-1}: W \rightarrow V$ is a linear transformation.
- Let V and W be vector spaces, and f : V → W a bijective linear transformation. Then f is called an **isomorphism** of vector spaces between V and W, and V and W are said to be **isomorphic**. We write V ≅ W.

ヘロン ヘロン ヘビン

- **Theorem 4.14:** Let V, W, and Z be vector spaces, and let $f: V \rightarrow W$ and $g: W \rightarrow Z$ be linear transformations. Then $g \circ f: V \rightarrow Z$ is a linear transformation.
- **Theorem 4.15:** Let *V* and *W* be vector spaces, and let $f: V \rightarrow W$ be a bijective linear transformation. Then the inverse function $f^{-1}: W \rightarrow V$ is a linear transformation.
- Let V and W be vector spaces, and f : V → W a bijective linear transformation. Then f is called an **isomorphism** of vector spaces between V and W, and V and W are said to be **isomorphic**. We write V ≅ W.

ヘロン ヘロン ヘビン

Theorem 4.17: Let *V* and *W* be vector spaces, and let $\mathcal{B} = {\mathbf{x}_1, ..., \mathbf{x}_n}$ be a basis of *V*. Let $\mathbf{y}_1, ..., \mathbf{y}_n \in W$. There is a unique linear transformation $f : V \to W$ such that $f(\mathbf{x}_i) = \mathbf{y}_i$ for all *i*. Moreover,

- f is injective if and only if {y₁,..., y_n} is linearly independent.
- **2** *f* is surjective if and only if $\{\mathbf{y}_1, \ldots, \mathbf{y}_n\}$ spans *W*.
- *f* is an isomorphism if and only if $\{\mathbf{y}_1, \ldots, \mathbf{y}_n\}$ is a basis of *W*.

Theorem 4.17: Let *V* and *W* be vector spaces, and let $\mathcal{B} = {\mathbf{x}_1, ..., \mathbf{x}_n}$ be a basis of *V*. Let $\mathbf{y}_1, ..., \mathbf{y}_n \in W$. There is a unique linear transformation $f : V \to W$ such that $f(\mathbf{x}_i) = \mathbf{y}_i$ for all *i*. Moreover,

- f is injective if and only if {y₁,..., y_n} is linearly independent.
- **2** *f* is surjective if and only if $\{\mathbf{y}_1, \ldots, \mathbf{y}_n\}$ spans *W*.
- *f* is an isomorphism if and only if $\{\mathbf{y}_1, \ldots, \mathbf{y}_n\}$ is a basis of *W*.

Corollary 4.18: Let *V* and *W* be finite dimensional vector spaces. Then $V \cong W$ if and only if dim $V = \dim W$.

イロト イポト イヨト イヨト

Theorem 4.17: Let *V* and *W* be vector spaces, and let $\mathcal{B} = {\mathbf{x}_1, ..., \mathbf{x}_n}$ be a basis of *V*. Let $\mathbf{y}_1, ..., \mathbf{y}_n \in W$. There is a unique linear transformation $f : V \to W$ such that $f(\mathbf{x}_i) = \mathbf{y}_i$ for all *i*. Moreover,

- *f* is injective if and only if {y₁,..., y_n} is linearly independent.
- **2** *f* is surjective if and only if $\{\mathbf{y}_1, \ldots, \mathbf{y}_n\}$ spans *W*.
- *f* is an isomorphism if and only if $\{\mathbf{y}_1, \ldots, \mathbf{y}_n\}$ is a basis of *W*.

Corollary 4.18: Let *V* and *W* be finite dimensional vector spaces. Then $V \cong W$ if and only if dim $V = \dim W$. In particular, every *n*-dimensional vector space is isomorphic to \mathbb{R}^n .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ